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ABSTRACT

This paper presents a novel control strategy based on predictor-feedback delay compensation for multiagent
systems to reach a prescribed target formation under unknown but bounded communication delays and
switching communication topology. Both communication delays and network topology can be subjected to
arbitrarily-fast time variations. The key idea is to implement predictor-feedback strategies using only relative
measurements between agents expressed in each local agent’s frame, with the aim to counteract the negative
effect of time delays. Nevertheless, due to the decentralized nature of the control, the presence of time-
varying delays and switching communication topology, only partial delay compensation is possible. Despite
this, we show that better performance can be achieved with our proposal with respect to non-predictor
control schemes by introducing a weighting factor for predictor-feedback terms in the control law. Sufficient
conditions based on Linear Matrix Inequalities (LMIs) for robust stability are also provided, which allow to
easily design the controller parameters in order to maximize the speed of convergence. Finally, simulation
results are provided to show the effectiveness of the proposed approach. Copyright c© 0000 John Wiley &
Sons, Ltd.

KEY WORDS: Delay compensation; Time-varying delay; Multi-agent system; Formation Control;
Linear Matrix Inequality (LMI)

1. INTRODUCTION

Formation control for groups of autonomous mobile agents has received an increasing interest in
the control community due to its high potential in different domains. A large variety of research
areas involving formation control can be mentioned, for example: unmanned aerial vehicle (UAV)
formation [6], autonomous multivehicle control [27], cooperative transport [2], etc. A key problem
is how to design a distributed control strategy for the multiagent system to achieve a geometrical
formation shape [26]. Different formation control strategies have been proposed depending on how
the desired target formation is defined, including distance-based formation [24] or position-based
formation in terms of absolute [30] and relative positions [5, 25].

It is worthwhile mentioning that a multiagent system constitutes a networked system, where
the exchanged information between agents is often delayed due to the time elapsed during data
transmission. Hence, time delays become a relevant issue in the stability analysis and synthesis
of multiagent systems, since they may degrade the control-loop performance or even lead to
instability [22, 14]. This fact has motivated the research of efficient and reliable methodology aimed
at analyzing the impact of communication delays in closed-loop stability of multiagent systems
[18, 32, 19]. For instance, the convergence of leader-follower synchronization of a network of
agents has been studied in [15] by means of Lyapunov-Krasovskii functionals (LKF), including
an estimator of time-varying delays in the control scheme to improve leader-tracking performance.
In formation control, the stability analysis under time delays has been addressed for leader-based
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formation control strategies, such as formation-containment control [20, 29], tracking formation
control [17] and multiple-leader based formation control with a stochastic sampling scheme in [28].

On the other hand, it is worthwhile mentioning that leaderless coordinate-free formation control
strategies [1, 12, 9] can achieve global convergence to a unique rigid shape in the absence of a global
coordinate system and leader agents, bringing more robustness and flexibility. For such coordinate-
free formation control methods, the effect of time delays has also been investigated under time-
constant delays [1] and further extended to time-varying delays [12, 9], revealing that the speed of
convergence is limited by the maximum allowable delay. Nevertheless, despite of the large number
of contributions on this topic, little attention has been paid to investigate a possible improvement
of the existing trade-off between speed of convergence and the maximum allowable time delay in
multiagent formation control systems, which might prevent from reaching the target formation in
a reasonable time interval if delays are large enough. This fact motivates the research of delay
compensation methods applied to formation control synthesis.

The underlying idea behind delay compensation consists in obtaining a future prediction of the
system state using past information with prediction horizon equivalent to the worst-case delay. Delay
compensation requires prior knowledge of the system model in order to find an equivalent delay-free
representation, and has the advantage of simplifying the control design [23, 8, 13]. Nevertheless, in
distributed control systems, an exact future prediction of the system state cannot be obtained since
the overall system model is not available to each agent. This fact, together with the presence of
time-varying switching communication topology, makes the predictor-feedback control synthesis a
non-trivial task.

Moreover, it is interesting to consider that only relative position measurements, expressed
in each local agent’s frame, are available. Under these premises, it is not necessary to share
a global coordinate reference frame by all the agents. In this framework, different coordinate-
free formation control synthesis algorithms were proposed to improve performance against time-
varying delays for different communication topologies of the multiagent system: strongly connected
communication topology [12], incomplete directed time-invariant topology [9], and time-varying
switching topology [10]. Nevertheless, in all cases, the maximum value of the control gain K (and
therefore the speed of convergence) is limited by the worst-case delay. This limitation was overcome
by applying delay compensation in coordinate-free formation control using multiple Smith
predictors [11] with multiagent systems with a complete communication topology. Nevertheless, no
conclusion was drawn about delay compensation control synthesis under time-varying delays and
switching topology to improve closed-loop performance, which, to the best authors’ knowledge, has
not been investigated.

As contribution, we propose a novel predictor-feedback formation control strategy for systems
with arbitrarily fast time-varying delays and switching topology, where the dynamics performance
of the overall system can be improved by introducing a weighting factor for delay compensation
terms in the predictor-feedback control. Through Lyapunov-Krasovskii approaches and small gain
theory, sufficient conditions based on LMIs are provided in order to ascertain the exponential
stability of the multiagent system with guaranteed decay rate performance, allowing to efficiently
design the control gain and the weighting factor to maximize the speed of convergence.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider a multiagent system composed of N agents, modeled as:

q̇i(t) = ui(t), i = {1, ..., N}, (1)

where qi(t) is the 2−D position vector of each agent, referred to any arbitrary reference frame.
For each pair of agents j, i ∈ {1, ..., N} × {1, ..., N}, j 6= i, we define qji(t) = qj(t)− qi(t) and cji
respectively as the current and the desired relative position between them. The control action ui(t)
must be designed to force the multiagent system (1) to reach a prescribed target formation, defined
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by the following set of interagent position vectors:

cji = (cji,x , cji,y), ∀[j, i] ∈ {1, ..., N} × {1, ..., N}. (2)

Definition 1
Let p ≥ 1, and let {A1, · · ·Ap} be a finite collection of graphs. We define Aσ(t) ∈ {A1, · · ·Ap}
the time-varying adjacency matrix corresponding to a switching communication graph between all
agents of system (1), where σ(t) ∈ {1, ..., p} is a time-varying switching signal. Hence, Aσ(t) can
be modeled as Aσ(t) =

∑p
s=1 λs(t)As, where:

λs(t) =

{
1, if σ(t) = s

0, otherwise,
(3)

and

As =


0 a

(s)
12 · · · a

(s)
1N

a
(s)
21 0 · · · a

(s)
2N

· · · · · · · · · · · ·
a

(s)
N1 a

(s)
N2 · · · 0

 , (4)

where a(s)
ji = 1 if agent i can receive information from agent j at instant t, and a(s)

ji = 0 otherwise.
�

The following assumptions and remarks on multiagent system (1) are considered regarding the
communication topology, the reference system available, and the nature of communication delays
in order to define the problem to be addressed:

Assumption 1
Each adjacency matrix As, s = 1, ..., p defined in (4) corresponds to a directed communication
topology, which contains at least a rooted directed spanning tree [4].

Remark 1
The adjacency matrix Aσ(t) given in Definition 1 is arbitrarily-fast time-varying, that is to say, the
switching frequency is not necessarily limited.

Remark 2
The agents do not share a global reference frame.

Remark 3
The communication links between two agents i and j are affected by unknown arbitrarily-fast time-
varying delays δji(t) but bounded δ1 ≤ δji(t) ≤ δ2, ∀t ≥ 0, where δ1, δ2 ≥ 0 are known constants.
Moreover, the functions δji(t) are not necessarily symmetric δji(t) 6= δij(t) and not necessarily
continuous.

3. PREDICTOR-FEEDBACK FORMATION CONTROL

Let tk be the sampling instants tk = kTs, k = 0, 1, 2, ... with sampling period Ts > 0. Hence, let us
introduce the following time-triggered predictor-feedback formation control strategy for system (1):

ui,k = K
1

Ts

N∑
j=1

aji,k

(
qji,k−τji,k −R(φ̂i,k − φi)cji

)
(5)

− γKN

2

 τ1∑
f=1

ui,k−f +

τ2∑
f=1

ui,k−f

 ,
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where K > 0 is the control gain, 0 ≤ γ ≤ 1 is a weighting factor for prediction terms (discussed
later in Remark 6), qji,k−τji,k are the available delayed relative position measurements to agent i,
acquired at instants tk, k = 0, 1, ..., and aji,k = aji(tk) =

∑p
i=1 λs(tk)a

(s)
ji , where λs(.) and a(s)

ji are
given in Definition 1. The function R(.) denotes the 2−D rotation matrix, where φi is the rotation
angle of each local agent’s frame (assumed to be time-invariant), and φ̂i,k is the local rotation angle
estimation, obtained by the following consensus law:

φ̂i,k+1 = φ̂i,k + vi,k (6)

where

vi,k = K

N∑
j=1

aji,k

(
φ̂ji,k−τji,k − φji

)
(7)

− γKN

2

 τ1∑
f=1

vi,k−f +

τ2∑
f=1

vi,k−f

 ,

being φji = φj − φi and φ̂ji,k = φ̂j,k − φ̂i,k the available measurements of the relative
misalignment angles and their estimations, respectively.

Remark 4
The discrete-time delays τ1 ≤ τji,k ≤ τ2 are obtained from the value rounded up to the next
highest integer of the continuous-time delay δ1 ≤ δji(tk) ≤ δ2. leading to τji,k = ceil(δji(tk)/Ts)
with τ1 = ceil(δ1/Ts), τ2 = ceil(δ2/Ts). Hence, the total delay will include the remaining time
between the time instant in which a measurement is received, and the sampling instant tk in
which the last received measurement is processed. This remaining time can be therefore expressed
as Tsτji,k − δji(tk), which is bounded by the sampling period Ts. Hence, Ts should be chosen
sufficiently small with respect to communication delays in order to minimize the delay increment
induced by sampling.

Remark 5
All relative position measurements qji,k in (5) are expressed in each local agent’s frame, whose
orientation φi is not available to each agent due to the absence of a global shared reference frame
(see Remark 2). To overcome this problem, we have introduced the consensus law (6)-(7) in order
to find an agreement for a common reference frame, where the consensus parameters K, γ must
be designed to guarantee that limk→∞R (εi,k) cji = R(α)cji in (5), being εi,k = φ̂i,k − φi the
estimation error of the rotation angle of each local agent’s frame, and α the rotation angle of the
agreed reference frame between all agents. The convergence analysis of (6)-(7), together with the
formation control law (5), is later addressed in Remark 7 and Theorem 1.
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3.1. Closed-loop dynamic equations

The closed-loop system (1) with the proposed formation control (5) and (6) can be written in
discrete-time form as:

qi,k+1 = qi,k + Tsui,k (8)

= qi,k +K

N∑
j=1

aji,k
(
qji,k−τji,k −R(εi,k)cji

)
− γKN Ts

2

 τ1∑
f=1

ui,k−f +

τ2∑
f=1

ui,k−f

 ,

φ̂i,k+1 = φ̂i,k + vi,k

= φ̂i,k +K

N∑
j=1

aji,k

(
φ̂ji,k−τji,k − φji

)

− γKN

2

 τ1∑
f=1

vi,k−f +

τ2∑
f=1

vi,k−f

 .

where qi,k are all agent’s position vectors.Also, from (8) we have that Tsui,k = qi,k+1 − qi,k and
φ̂i,k+1 − φ̂i,k = vi,k. Hence, we obtain the following equivalences:

Ts
2

 τ1∑
f=1

ui,k−f +

τ2∑
f=1

ui,k−f

 = qi,k −
1

2
qi,k−τ1 −

1

2
qi,k−τ2 , (9)

1

2

 τ1∑
f=1

vi,k−f +

τ2∑
f=1

vi,k−f

 = φ̂i,k −
1

2
φ̂i,k−τ1 −

1

2
φ̂i,k−τ2

and the dynamic equations given in (8) can therefore be reformulated as:

qi,k+1 = (1− γKN) qi,k +K

N∑
j=1

aji,k
(
qji,k−τji,k −R(εi,k)cji

)
+ γK

N

2
(qi,k−τ1 + qi,k−τ2) ,

φ̂i,k+1 = (1− γKN) φ̂i,k +K

N∑
j=1

aji,k

(
φ̂ji,k−τji,k − φji

)
(10)

+ γK
N

2

(
φ̂i,k−τ1 + φ̂i,k−τ2

)
.

Now, let us introduce the following definitions:

Definition 2
Given two agents i and j, we define the relative formation error as:

eji,k = qji,k −R (α) cji (11)

where α is the agreement for the rotation angle of the reference frame, which must be reached by
the consensus law (6)-(7) (see Remark 5). �

Definition 3
Given two agents i and j, we define the relative consensus error as:

εji,k = εj,k − εi,k, (12)
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or equivalently

εji,k = φ̂ji,k − φji, (13)

where εi,k is introduced in Remark 5. �

With the above definitions and (10), we finally obtain the closed-loop system model expressed in
terms of the relative errors εji,k and eji,k:

εji,k+1 = (1− γKN) εji,k (14a)

+K

N∑
m=1

(
amj,k εmj,k−τmj,k

− ami,k εmi,k−τmi,k

)
+ γK

N

2
(εji,k−τ1 + εji,k−τ2) ,

eji,k+1 = (1− γKN) eji,k (14b)

+K

N∑
m=1

amj,k
(
emj,k−τmj,k

+ ωmj,k
)

−K
N∑
m=1

ami,k
(
emi,k−τmi,k

+ ωmi,k
)

+ γK
N

2
(eji,k−τ1 + eji,k−τ2) ,

where

ωji,k = R(α)cji −R(εi,k)cji (15)

Remark 6
On the one hand, by setting γ = 0 in (5) and (7), we obtain the non-predictor formation control given
in [10], where the maximum value of K (and therefore the speed of convergence) is limited by the
worst-case delay. On the other hand, by setting γ = 1, the closed-loop system (14a)-(14b) renders
delay-free in the presence of a strongly connected communication graph (that is to say, amj,k =
ami,k = 1,∀j, i, i 6= j, ∀k ≥ 0) and known time-constant delays τmj,k = τmi,k = τ1 = τ2 ≡ h. In
this case, the maximum speed of convergence can be achieved by setting K = 1/N , as can be
deduced from the expressions:

eji,k+1 = (1−KN) eji,k +K

N∑
m=1

(ωmj,k − ωmi,k) ,

εji,k+1 = (1−KN) εji,k, (16)

which are obtained from (14a) and (14b) by applying the equivalence
∑N

m=1 (emj,k − emi,k) =

−Neji,k,
∑N

m=1 (εmj,k − εmi,k) = −Nεji,k. Hence, the novelty introduced in the proposed
formation control relies on the prediction terms introduced in the rightmost part of (5) and (7)
weighted by the scalar factor 0 ≤ γ ≤ 1, which offers an extra degree of freedom to improve closed-
loop performance in the control design. Moreover, it is worthwhile to recall that our predictor-based
delay compensation is implemented by using only relative measurements expressed in each local
agent’s frame (decentralized predictor). As shown later, a suitable choice of the weighting factor
γ and the control gain K, may improve the closed-loop performance with respect to γ = 0 (non-
predictor) and γ = 1. Indeed, the proposed approach can be viewed as a partial delay compensation
weighted by γ, whose benefits are later discussed.

Definition 4
Given a discrete-time system xk+1 = f(xk) with some initial condition x0, we say that the system
is β−stable if xk converges with some decay rate 0 < β < 1, that is: ||xk|| ≤ B||x0||β−k, ∀k ≥ 0,
for some B > 0. �
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Control synthesis objective: Find the control parameters K and γ in order to maximize the speed
of convergence (or minimize β) of the formation control system (14a)-(14b).

4. STABILITY ANALYSIS

This section addresses the robust β−stability analysis of the formation control system (1) and (5). To
this end, we first obtain an equivalent interconnected representation for the closed-loop multiagent
system (Section 4.1), which will be useful later to address the robust stability analysis (Section 4.2)
and control synthesis (Remark 8) by small gain theory.

4.1. An equivalent interconnected closed-loop system model

The following lemma finds the equivalent closed-loop system model given in Fig. 1 for (1), (5)
and (6), where the interconnected systems S1 −∆1 and S2 −∆2 correspond to (14a) and (14b)
respectively, with

ωk = (ω21,k, ω31,k, ω41,k, · · · , ωN1,k,

ω12,k, ω32,k, ω42,k, · · · , ωN2,k,

· · · , · · · , · · · , · · · ,

ω1N,k, ω2N,k, ω3N,k, · · · , ωN−1N,k)
T
,

(17)

and ωji,k defined in (15). The forward subsystems S1, S2 are Linear Parameter Varying (LPV)
systems with time-constant delays, and the feedback systems ∆1 and ∆2 are uncertain norm-
bounded time-varying operators which contain all sources of time-varying delay mismatches.

Lemma 1
The closed-loop formation control system (14a) and (14b) is equivalent to the interconnected system
given in Fig. 1, where:

S1 :


εk+1 = (1− γKN) εk

+ (T+GkT ) (εk−τ1 + εk−τ2) + τ (T+Hk) ρk,

yρk = −γKNTεk + (GkT ) (εk−τ1 + εk−τ2) + τHkρk,

(18)

∆1 : ρk = ∆1,k y
ρ
k,

S2 :



ek+1 = (1− γKN) ek + (T+GkT ⊗ I2) (ek−τ1 + ek−τ2)

+τ (T+Hk ⊗ I2) ξk +KHkωk,

yξk = −γKN (T ⊗ I2) ek + (GkT ⊗ I2) (ek−τ1 + ek−τ2)

+τ (Hk ⊗ I2) ξk +KHkωk,

∆2 : ξk = ∆2,k y
ξ
k

where

εk =
(
ε21,k, · · · , εN1,k

)T ∈ RN−1, (19)

ek =
(
e21,k, · · · , eN1,k

)T ∈ R2(N−1),
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1S

1∆

2S

2∆

kω

kρ kξkyρ
kyξ

Figure 1. Interconnected system model for the multiagent system (1) with (5), (6) and (7).

and ωk is defined in (17). ∆1,k ∈ RN̄ and ∆2,k ∈ R2N̄ with N̄ = N(N − 1) are unitary norm-
bounded time-varying operators with diagonal structure: ||∆1,k||∞ ≤ 1, ||∆2,k||∞ ≤ 1, and

τ = τ2 − τ1, N̄ = N(N − 1) (20)

Gk =
K

2
(γN · IN̄ + Fk) , Hk =

K

2
Fk,

Fk =

p∑
s=1

λs,kFs, Fs = (T1 − T2)⊗ 11×(N−1) · diag(ās),

T+ =
[
IN−1 0(N−1)×(N̄−N+1)

]
, T = (T1 − T2)

[
01×(N−1)

IN−1

]
,

T1 =
[(
I1
N

)T · · ·
(
INN
)T ]T

, T2 = IN ⊗ 1(N−1)×1

where ās gathers all the entries of (4), arranged as:

ās =
(
a

(s)
21 , a

(s)
31 , a

(s)
41 , · · · , a

(s)
N1,

a
(s)
12 , a

(s)
32 , a

(s)
42 , · · · , a

(s)
N2,

· · · , · · · , · · · , · · · ,

a
(s)
1N , a

(s)
2N , a

(s)
3N , · · · , a

(s)
N−1N

)T
.

(21)

and the scalar functions λs,k = λs(t)|t=kTs with λs(t) are defined in (3). The symbol ⊗ stands
for the Kronecker product, and the symbols IrN , 1 ≤ r ≤ N stand for matrices of dimension
(N − 1)×N obtained from the identity matrix IN by removing its rth row.

Proof
Let us obtain separately the subsystem models S1 −∆1 and S2 −∆2:

Subsystem S1 −∆1: First, let us write εji,k−τji,k as

εji,k−τji,k =
1

2
(εji,k−τ1 + εji,k−τ2 + τρji,k) (22)

where τ = τ2 − τ1 and

ρji,k =
2

τ

(
εji,k−τji,k −

1

2
(εji,k−τ1 + εji,k−τ2)

)
. (23)
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Applying (22), system (14a) can be rewritten as:

εji,k+1 = (1− γKN)εji,k (24)

+
K

2

(
γNεji,k−τ1 +

N∑
m=1

(amj,kεmj,k−τ1 − ami,kεmi,k−τ1)

)

+
K

2

(
γNεji,k−τ2 +

N∑
m=1

(amj,kεmj,k−τ2 − ami,kεmi,k−τ2)

)

+
τK

2

(
N∑
m=1

amj,kρmj,k −
N∑
m=1

ami,kρmi,k

)
.

By applying Lemma 2 (see Appendix), it can be deduced that there exists a time-varying operator
∆

(1)
ji,k ∈ R satisfying ||∆(1)

ji,k||∞ ≤ 1 and:

ρji,k = ∆
(1)
ji,ky

ρ
ji,k, (25)

where ρji,k is the input defined in (23), and

yρji,k = εji,k+1 − εji,k (26)

Note the equivalence
∑N

m=1 (amj,kεmj,k − ami,kεmi,k) = Fkε̄k, with Fk given in (20) and ε̄k
given below in (28). Hence, all the dynamic equations (24), (25) and (26) can be put in matricial
form as:

ε̄k+1 = (1− γKN) ε̄k + Gkε̄k−τ1 + Gkε̄k−τ2 + τHkρk, (27a)

ρk = ∆1,ky
ρ
k, ∆1,k = diag

(
∆

(1)
21,k, · · · ,∆

(1)
N−1N,k

)
(27b)

yρk = −γKNε̄k + Gkε̄k−τ1 + Gkε̄k−τ2 + τHkρk, (27c)

where τ , Gk, Hk are defined in (20), and

ε̄k = [ε21,k, · · · , εN−1N,k]T ∈ RN(N−1), (28)

ρk = [ρ21,k, · · · , ρN−1N,k]T ∈ RN(N−1),

yρk = [yρ21,k, · · · , y
ρ
N−1N,k]T ∈ RN(N−1)

are augmented vectors containing respectively all terms εji,k, ρji,k, yρji,k, arranged in a similar
fashion as ωk given in (17).

Note that all the relative errors eji, εji, j 6= i can be expressed as a function of ej1, εj1, j =
2, ..., N . Hence, (27a) and (27c) can equivalently be modeled as the interconnected subsystem
S1 −∆1 by applying the state transformations εk = T+ε̄k, ε̄k = Tεk and ρk = ∆1,kyρk .

Subsystem S2 −∆2: Analogously, let us write eji,k−τji,k as

eji,k−τji,k =
1

2
(eji,k−τ1 + eji,k−τ2 + τξji,k) (29)

where τ = τ2 − τ1 and

ξji,k =
2

τ

(
eji,k−τji,k −

1

2
(eji,k−τ1 + eji,k−τ2)

)
. (30)
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Applying (29), system (14b) can be rewritten as:

eji,k+1 = (1− γKN)eji,k (31)

+
K

2

(
γNeji,k−τ1 +

N∑
m=1

(
amj,kemj,k−τ1 − ami,kemi,k−τ1

))

+
K

2

(
γNeji,k−τ2 +

N∑
m=1

(
amj,kemj,k−τ2 − ami,kemi,k−τ2

))

+
τK

2

(
N∑
m=1

amj,kξmj,k −
N∑
m=1

ami,kξmi,k

)

+K

(
N∑
m=1

amj,kωmj,k −
N∑
m=1

ami,kωmi,k

)
.

By applying Lemma 2 (see Appendix), it can be deduced that there exists a time-varying operator
∆

(2)
ji,k ∈ R2 satisfying ||∆(2)

ji,k||∞ ≤ 1, and:

ξji,k = ∆
(2)
ji,ky

ξ
ji,k, (32)

where

yξji,k = eji,k+1 − eji,k. (33)

The rest of the proof can be completed following the same steps as for subsystem S1 −∆1 by taking
into account ωk in (17), and defining

ēk = [e21,k, · · · , eN−1N,k]T ∈ R2N(N−1), (34)

ξk = [ξ21,k, · · · , ξN−1N,k]T ∈ R2N(N−1),

yξk = [yξ21,k, · · · , y
ξ
N−1N,k]T ∈ R2N(N−1),

∆2,k = diag
(

∆
(2)
21,k, · · · ,∆

(2)
N−1N,k

)
,

and applying the state transformations ek = (T+ ⊗ I2) ēk, ēk = (T ⊗ I2) ek.

Remark 7
Note that εi,k = φ̂i,k − φi converges to the agreed rotation angle α if and only if subsystem S1 −∆1

is robustly stable for any time-varying delay and switching topology. In this case, all the entries
ωji,k given in (15) vanish, as long as k →∞, and the term R(φ̂i,k − φi)cji in (5) converges to the
rotated reference frame R(α)cji. Hence, the stability of the overall system (18) can be ascertained
by proving the stability of S1 −∆1 and S2 −∆2 separately.

As pointed out in Remark 6, only partial delay compensation might be achievable due to the
presence of time-varying delay mismatches and switching topology in the decentralized setup
considered here. Next sections address the stability analysis and control design (parameters K and
γ) to improve closed-loop performance in terms of speed of convergence.

4.2. Sufficient LMI conditions for stability analysis

This section gives sufficient conditions based on LMIs for the β−stability of the multiagent system
(1) with the proposed predictor-based formation control (5). Note that the equivalent system model
given in Lemma 1 (see Fig. 1) is composed of two systems: (S1 −∆1) and (S2 −∆2) respectively.
In accordance with Remark 7, the β− stability of the overall system can be demonstrated by proving
separately that the two interconnected systems (S1 −∆1) and (S2 −∆2) are stable, as explained in
the following theorem:
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Theorem 1
Given the controller parameters 0 ≤ γ ≤ 1, K > 0, the lower and upper bound delays τ1, τ2, and
the decay rate β, system (1) with control law (5) is β−stable if there exist symmetric matrices
P,Q1, Q2, Z1, Z2 ∈ RN−1 > 0 and positive scalars v1, v2, · · · , vN̄ such that the following LMIs
hold, ∀s ∈ [1, · · · , p]:

Πs =


Π ΩT1,sP ΩT2,sZ ΩT3,sW
(∗) −P 0 0
(∗) (∗) −Z 0
(∗) (∗) (∗) −W

 < 0 (35)

where

Π =

Π11 Π12 Π13 0
(∗) Π22 0 0
(∗) (∗) Π33 0
(∗) (∗) (∗) −W

 , ΩT1,s =


ΩT

(T+GsT )
T

(T+GsT )
T

τ (T+Hs)
T

 , (36)

ΩT2,s =


ΩT − IN−1

(T+GsT )
T

(T+GsT )
T

τ (T+Hs)
T

 , ΩT3,s =


−γKNTT

(GsT )
T

(GsT )
T

τHT
s


Ω = (1− γKN) · IN−1,

Gs =
K

2
(γN · IN̄ + Fs) , Hs =

K

2
Fs,

Π11 = −β2P +Q1 +Q2 − β2τ1Z1 − β2τ2Z2,

Π12 = β2τ1Z1,

Π13 = β2τ2Z2,

Π22 = −β2τ1Q1 − β2τ1Z1,

Π33 = −β2τ2Q2 − β2τ2Z2,

Z = τ1µ1Z1 + τ2µ2Z2, W = diag (v1, v2, · · · , vN̄ ) ,

µ1 =

τ1∑
f=1

β2(f−1), µ2 =

τ2∑
f=1

β2(f−1),

and τ, Fs, T, T+ defined in Lemma (1).

Proof
From the equivalence given in Lemma 1, the convergence of the formation control can be proved
by checking the robust stability of system (18). First, let us go with system S1 −∆1: Stability of
S1 −∆1: Consider the following Lyapunov-Krasovskii functional:

Vk = V1,k + V2,k + V3,k, (37)

where

V1,k = εTk Pεk, (38)

V2,k =

τ1∑
m=1

β2(m−1)εTk−mQ1εk−m +

τ2∑
m=1

β2(m−1)εTk−mQ2εk−m,

V3,k = τ1

τ1∑
f=1

f∑
m=1

β2(f−1)ηTk−mZ1ηk−m + τ2

τ2∑
f=1

f∑
m=1

β2(f−1)ηTk−mZ2ηk−m
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and ηk = εk+1 − εk. Taking into account system S1 in (18), the increments ∆V
i,k = Vi,k+1 −

β2Vi,k, i = 1, 2, 3 yield respectively:

∆V
1,k = εTk+1Pεk+1 − β2εTk Pεk (39)

= χTk
(
Ξ1 + ΩT1,kPΩ1,k

)
χk,

∆V
2,k = εTk (Q1 +Q2)εk − β2τ1εTk−τ1Q1εk−τ1 − β2τ2εTk−τ2Q2εk−τ2

= χTk Ξ2χk,

∆V
3,k = (τ1µ1)ηTk Z1ηk + (τ2µ2)ηTk Z2ηk

− β2τ1

(
τ1

k−1∑
m=k−τ1

ηTmZ1ηm

)
− β2τ2

(
τ2

k−1∑
m=k−τ2

ηTmZ2ηm

)
,

and

Ξ1 = diag
(
−β2P, 0, 0, 0

)
, (40)

Ξ2 = diag
(
Q1 +Q2, −β2τ1Q1, −β2τ2Q2, 0

)
,

where Ωi,k =
∑p

s=1 λs,kΩi,s, i = 1, 2, 3 with λs,k = λ(kTs) defined in (3), Ωi,s defined in (36), and
χk =

[
εTk εTk−τ1 εTk−τ2 ρTk

]T
. Applying Jensen’s inequality [3], we have that

− τ1
k−1∑

m=k−τ1

ηTmZ1ηm ≤

(
k−1∑

m=k−τ1

ηTm

)
Z1

(
k−1∑

m=k−τ1

ηm

)
(41)

= (εk − εk−τ1)
T
Z1 (εk − εk−τ1) ,

− τ2
k−1∑

m=k−τ2

ηTmZ2ηm ≤

(
k−1∑

m=k−τ2

ηTm

)
Z2

(
k−1∑

m=k−τ2

ηm

)
= (εk − εk−τ2)

T
Z2 (εk − εk−τ2) .

Also, recalling that Z = τ1µ1Z1 + τ2µ2Z2, ηk = εk+1 − εk, and Ω2,k =
∑p

s=1 λs,kΩ2,s, i = 1, 2, 3
with Ω2,s defined in (36), we obtain the following equivalence:

τ1µ1η
T
k Z1ηk + τ2µ2η

T
k Z2ηk = χTk

(
ΩT2,kZΩ2,k

)
χk (42)

Replacing (41) and (42) into ∆V
3,k in (39) we obtain:

∆V
3,k ≤ χTk

(
ΩT2,kZΩ2,k

)
χk + χTk Ξ3χ

T
k , (43)

where

Ξ3 =

−β
2τ1Z1 − β2τ2Z2 Π12 Π13 0

(∗) −β2τ1Z1 0 0
(∗) (∗) −β2τ1Z2 0
(∗) (∗) (∗) 0

 . (44)

Noting that W > 0 defined in (36) is of diagonal structure, there exists a diagonal matrix
X = diag (x1, ..., xN̄ ) for some scalars xi 6= 0, i = 1, ..., N̄ such that W = X 2 and X∆1,k =
∆1,kX , ∀k ≥ 0, taking into account the diagonal structure of the time-varying operator ∆1,k given
in (27b). To prove the stability of the interconnected system S1 −∆1, it suffices to prove that the
fulfilment of (35) implies the two conditions given in Theorem 2: (i) the internal β-stability of
system S1, and (ii) the condition ||XS1X−1||∞ < 1. Both conditions can be ensured by proving
the existence of a diagonal matrix W > 0 and a Lyapunov-Krasovskii functional (37) such that the
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following inequality is true:

∆V
k +

(
yρk
)T
Wyρk − ρ

T
kWρk < 0, (45)

where ∆V
k = ∆V

1,k + ∆V
2,k + ∆V

3,k. From (39) and taking into account that yρk = Ω3,kχk, Gk =∑p
s=1 λs,kGs, Hk =

∑p
s=1 λs,kHs and the inequality (43), the above inequality (45) is fulfilled

if
p∑
s=1

λs,k
(
Ξ + ΩT1,sPΩ1,s + ΩT2,sZΩ2,s + ΩT3,sWΩ3,s

)
< 0, (46)

where Ξ = Ξ1 + Ξ2 + Ξ3 being Ξ1, Ξ2 and Ξ3 defined in (40) and (44). Note from Definition 1 and
λs,k = λs(tk) the following properties: 0 ≤ λs(tk) ≤ 1 and

∑p
s=1 λs(tk) = 1, tk = kTs, ∀k ≥ 0.

Hence, the inequality (46) is true if the following LMIs hold, ∀s = 1, ..., p:

Ξ + ΩT1,sPΩ1,s + ΩT2,sZΩ2,s + ΩT3,sWΩ3,s < 0 (47)

Finally, applying Schur Complement in ΩT1,sPΩ1,s, ΩT2,sZΩ2,s and ΩT3,sWΩ3,s, it can be seen that
(35) and (47) are equivalent, concluding the first part of the proof.

Stability of S2 −∆2: Proceeding in a similar way as (45), consider the inequality:

∆V
k +

(
yξk

)T
(W ⊗ I2) yξk − ξ

T
k (W ⊗ I2) ξk < 0, (48)

and the Lyapunov-Krasovskii function:

V1,k = eTk (P ⊗ I2) ek, (49)

V2,k =

τ1∑
m=1

β2(m−1)eTk−m (Q1 ⊗ I2) ek−m +

τ2∑
m=1

β2(m−1)eTk−m (Q2 ⊗ I2) ek−m,

V3,k = τ1

τ1∑
f=1

f∑
m=1

β2(f−1)νTk−m (Z1 ⊗ I2) νk−m + τ2

τ2∑
f=1

f∑
m=1

β2(f−1)νTk−m (Z2 ⊗ I2) νk−m,

where νk = ek+1 − ek. From (18) and following the same steps (39)-(47), we obtain the following
conditions with s = 1, .., p:(

Ξ + ΩT1,sPΩ1,s + ΩT2,sZΩ2,s + ΩT3,sWΩ3,s

)
⊗ I2 < 0 (50)

By applying Lemma 3, we obtain that the above inequalities (50) are equivalent to:

I2 ⊗
(
Ξ + ΩT1,sPΩ1,s + ΩT2,sZΩ2,s + ΩT3,sWΩ3,s

)
< 0 (51)

by pre- and post-multiplying by some permutation matrix P . Finally, it can be seen that (51) is true
if and only if (47) holds, which is equivalent to (35) by Schur Complement.

Hence, the fulfilment of LMIs (35) implies that subsystems S1 −∆1 and subsystem S1 −∆1 are
robustly β−stable. Therefore, the overall system given in Lemma 1 is stable, taking into account
that ωk vanishes if subsystem S1 −∆1 is stable (as discussed in Remark 7). Finally, the proof is
concluded from the equivalence stated in Lemma 1 with the closed-loop system (14a) and (14b).

A feasible solution for a set of LMIs can be found by using numerical efficient and reliable
algorithms based on convex optimization approaches (e.g., interior point [21]), which are available
in standard commercial libraries (LMI Control Toolbox [7], SeDuMi [16], etc).

Remark 8
The design of K, γ can be addressed by applying dichotomic search in Theorem 1 inside the range
values K > 0 and 0 ≤ γ ≤ 1 with the objective of minimizing β (maximum speed of convergence).

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc



14

Table I. Control designs under time-varying delays and the switching topology given in Fig. 2 (Simulation
1). First row, non-predictor. Second row: proposed weighted predictor and Third row: predictor with γ = 1.

Rightmost column: decay rate β

Control method K γ β

no-predictor 0.5 · 10−3 0 0.9999
weighted predictor 4.2 · 10−3 0.61 0.9994

predictor 3.6 · 10−3 1 0.9995

5. SIMULATION RESULTS

In this section, two comparative examples are provided in order to illustrate the effectiveness of the
proposed weighted predictor-feedback formation control in the presence of time delays and time-
varying switching communication topology.

5.1. Simulation 1

Consider a multiagent system (1) composed of N = 12 agents. In the aim to show the benefits of
the proposed weighted predictor-based control approach, the following three control strategies are
given for comparative purposes:

• (i) Non-predictor feedback control: (5)-(6) (γ = 0).
• (ii) Weighted predictor-feedback control: (5)-(6).
• (iii) Predictor-feedback control (5)-(6) with γ = 1.

Let the sampling period be Ts = 0.05s. The objective is to design the above controllers to reach
the target formation depicted in Fig. 2 (solid blue line) as fast as possible. The non-predictor and
predictor-feedback control (cases (i) and (iii)) are designed by applying Theorem 1 and dichotomic
search in K > 0 with γ = 0 and γ = 1 respectively in order to minimize the decay rate β. The
weighted predictor-feedback controller parameters are designed with the same objective by means
of Theorem 1 and dichotomic search (see Remark 8) inK > 0 and 0 ≤ γ ≤ 1. As a result, we obtain
the control parameters given in Table I which ensure for each control design the β-stability of the
formation control with β given in the rightmost column of Table I, for any time-varying delays
satisfying τ1 ≤ τji,k ≤ τ2 with τ1 = 389, τ2 = 391 and switching topology Aσ(t) ∈ [A1, A2, A3],
with {A1, A2, A3} given in Fig. 2.

Simulation results are depicted in Fig. 4, where the above control strategies (see Table I) are
compared in the presence of time-varying delays 340 ≤ τji,k ≤ 440 (see rightmost side of Fig. 3)
and switching topology Aσ(t) ∈ [A1, A2, A3] with {A1, A2, A3} given in Fig. 2, and σ(t) depicted
in the leftmost side of Fig. 3. The left, middle and right parts of Fig. 4 show respectively the system
response using non-predictor control design (given in Table I, first row), the proposed weighted
predictor-feedback design (given in Table I, second row), and the predictor-feedback design with
γ = 1 (give in Table I, third row). The upper part in Fig. 4 depicts the trajectories followed by each
agent. The middle part represents the time evolution of the estimation of the rotation angle of the
reference frame φ̂i made by each agent from (6), and the lower part gives the time evolution of the
normalized cost functions J1,k (solid blue line) and J2,k (dashed red line), defined as

J1,k =

∑N
i=1 ||ui,k||2∑N
i=1 ||ui,0||2

, J2,k =

∑N
i=1 ||vi,k||2∑N
i=1 ||vi,0||2

(52)

where ui,k and vi,k are respectively defined in (5) and (6).
Note that in all three cases, the multiagent system is exponentially stable and the estimations

φ̂i, i = 1, ..., 12 converge to the agreed rotation angle of the global reference frame (α ≈ −2.4rad).
However, the minimum time required to reach the formation for this multiagent system with the
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Figure 2. Target formation (solid blue lines) and switching communication topology (dashed red lines) with
As, s = 1, 2, 3 for Simulation 1.
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Figure 3. Left: Time-varying switching signal σ(t) ∈ {1, 2, 3} for the communication topology Aσ(t) ∈
{A1, A2, A3} with Ai, i = 1, 2, 3 given in Fig. 2. Right: time-varying delays (average value, minimum and

maximum) for Simulation 1.

given time-varying delay interval is around 600s (see second and third row in left column, Fig. 4),
being not possible to achieve faster convergence by using non-predictor control. However, by using
predictor-feedback control with the designed controller parameters, the setting time is reduced to
100s approximately (more than six times faster). It can also be appreciated how the trajectories
followed by each agent are visibly improved using the proposed control scheme. Also, note that
by choosing γ = 1, the maximum convergence speed is a bit slower than using weighting predictor
(around 150s), which reveals the effectiveness of delay compensation weighted by γ = 0.61 in the
sense of faster convergence. For a fair comparison, the same time-varying delay and time-varying
switching topology patterns (given in Fig. 3) have been used to perform all simulations.

5.2. Simulation 2

Consider the same multiagent system as in the previous example, but defining a switching
communication topology with lower degree of connectivity (see Fig 5, dashed red line). We
proceed as in Simulation 1 with sampling period Ts = 0.05s, obtaining the control parameters
given in Table II which ensure the β-stability of the formation control for any time-varying delays
satisfying τ1 ≤ τji,k ≤ τ2 with τ1 = 34, τ2 = 36 and switching topology Aσ(t) ∈ [A1, A2, A3], with
{A1, A2, A3} given in Fig. 5.

Simulation results are depicted in Fig. 7, where the control strategies given in Table II are
compared under time-varying delays 30 ≤ τji,k ≤ 40 given in the rightmost side of Fig. 6, and
switching topology Aσ(t) ∈ [A1, A2, A3] with σ(t) depicted in the leftmost side of Fig. 6. In all
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Figure 4. Comparative results between non-predictor (left), proposed weighted predictor (middle), and
predictor control (right) given in Table I under time-varying delays 340 ≤ τji,k ≤ 440 and switching
topologyAσ(t) ∈ [A1, A2, A3] given in Fig. 2 (Simulation 1). First row: trajectories followed by each agent.

Second row: Estimation of the angle φ̂i, and Third row: Normalized cost functions J1,k and J2,k in (52)

Table II. Control designs under time-varying delays and switching topology given in Fig. 5 (Simulation 2).
First row, non-predictor. Second row: proposed weighted predictor. Rightmost column: decay rate β

Control method K γ β

no-predictor 7.5 · 10−3 0 0.9997
weighted predictor 66.7 · 10−3 0.28 0.9996

predictor 56.2 · 10−3 1 0.9999

three cases, the multiagent system is exponentially stable. However, it can be appreciated that by
using the weighted predictor with γ = 0.28, the faster response is achieved with a settling time less
than 150s, whereas by setting γ = 1, the formation control is not reached after 150s due to slower
convergence. Note that only a slight improvement can be appreciated with respect to non-predictor
control (γ = 0) in comparison to Simulation 1. Hence, one can conclude that the effectiveness of
delay compensation decreases as long as the degree of connectivity in the communication graph
is lower. This fact means that the predictor-feedback term has less capability to counteract delays
under weaker connected graphs since the prediction becomes less reliable, which is consistent with
the design of a lower value for the weighting factor γ for prediction terms in the proposed formation
control: γ = 0.28 in this case vs γ = 0.61 in case of stronger connectivity (Simulation 1).
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Figure 5. Target formation (solid blue lines) and switching communication topology with lower degree of
connectivity (dashed red lines) with As, s = 1, 2, 3 for Simulation 2.
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Figure 6. Left: Time-varying switching signal σ(t) ∈ {1, 2, 3} for the communication topology Aσ(t) ∈
{A1, A2, A3} with Ai, i = 1, 2, 3 given in Fig. 5 (Simulation 2). Right: time-varying delays (average value,

minimum and maximum) for Simulation 2.

6. CONCLUSIONS AND PERSPECTIVES

We have presented in this paper a weighted predictor-feedback control strategy for systems with
time-varying communication delays and switching communication topology. By properly designing
the control gain and the weighting factor, better agents’ trajectories and convergence ratios can
be achieved in comparison to non-predictor feedback control, even in case of communication
topology with low degree of connectivity. Future developments could address other relevant issues in
formation control, such as guaranteeing the absence of collisions, or implementing event-triggered
protocols with the objective of reducing the bandwidth usage and energy consumption.

APPPENDIX

Theorem 2
(Scaled Small Gain Theorem)[14] (Chapter 8) Given two subsystems S and ∆, the interconnected
system y = Se, e = ∆y is robustly stable for any interconnected time-varying uncertain system ∆
with ||∆||∞ ≤ 1 if the following two conditions hold: (i) The system S is internally stable and (ii)
there exist a regular matrix X such that X∆ = ∆X and ||XSX−1||∞ < 1.

Lemma 2
Given a discrete-time signal εk and any arbitrary sequence of integer numbers τk satisfying
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Figure 7. Comparative results between non-predictor (left), proposed weighted predictor (middle), and
predictor control (right) given in Table II under time-varying delays 30 ≤ τji,k ≤ 40 and switching topology
Aσ(t) ∈ [A1, A2, A3] given in Fig. 5 (Simulation 2). First row: trajectories followed by each agent. Second

row: Estimation of the angle φ̂i, and Third row: Normalized cost functions J1,k and J2,k in (52)

τ1 ≤ τk ≤ τ2, ∀k ≥ 0. Let yρk = εk+1 − εk and

ρk =
2

τ

(
εk−τk −

1

2
(εk−τ1 + εk−τ2)

)
, (53)

where τ = τ2 − τ1. Then, the time-varying operator ∆d : yρk → ρk renders ρk =
1
τ

∑k−τ1−1
i=k−τ2 fρ(i)yρ,i, where

fρ(i) =

{
1 if i < k − τk − 1,

−1 otherwise,
(54)

and satisfies ||∆d||∞ ≤ 1, where the symbol ||.||∞ denotes the largest possible L2 induced norm of
a general operator.

Proof
The proof is an adaptation of a similar result given in [31, Lemma 2] for continuous-time
systems.

Lemma 3
[9] Given two square matrices A and B, the following equivalence holds:

PT (A⊗B)P = B ⊗A (55)
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where P is some regular permutation matrix.
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formation control in local frames under time-varying delays and actuator faults. Journal of the Franklin Institute,
356(2):1131–1153, 2019.
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